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Standard models in economics stress the role of intelligent agents
who maximize utility. However, there may be situations where
constraints imposed by market institutions dominate strategic
agent behavior. We use data from the London Stock Exchange to
test a simple model in which minimally intelligent agents place
orders to trade at random. The model treats the statistical me-
chanics of order placement, price formation, and the accumulation
of revealed supply and demand within the context of the contin-
uous double auction and yields simple laws relating order-arrival
rates to statistical properties of the market. We test the validity of
these laws in explaining cross-sectional variation for 11 stocks. The
model explains 96% of the variance of the gap between the best
buying and selling prices (the spread) and 76% of the variance of
the price diffusion rate, with only one free parameter. We also
study the market impact function, describing the response of
quoted prices to the arrival of new orders. The nondimensional
coordinates dictated by the model approximately collapse data
from different stocks onto a single curve. This work is important
from a practical point of view, because it demonstrates the exis-
tence of simple laws relating prices to order flows and, in a broader
context, suggests there are circumstances where the strategic
behavior of agents may be dominated by other considerations.

double auction market � market microstructure � agent-based models

The traditional paradigm in economics is one of rational utility
maximizing agents. Recognizing limitations in human cog-

nition, economists have increasingly explored models in which
agents have bounded rationality. We take this direction even
further here by testing a model of trading in financial markets
that drops agent rationality almost altogether. These results are
particularly striking because the model predicts simple quanti-
tative laws relating different properties of markets that are borne
out well when tested against data.

Although no one would dispute that agents in financial
markets behave strategically, and that for some purposes taking
this into account is essential, we show in this paper that there are
some problems where other factors may be more important.
Previous work along these lines includes that of Becker (1), who
showed that random agent behavior and budget constraint are
sufficient to guarantee the proper slope of supply and demand
curves, and Gode and Sunder (2), who demonstrated that if one
replaces the students in a standard classroom economics exper-
iment by zero-intelligence agents with a budget constraint, they
perform surprisingly well. More specifically, the model we test
here builds on earlier work on the double auction in financial
economics (3–6) and physics (7–11). [See also interesting sub-
sequent work (12, 13).] The model makes the simple assumption
that agents place orders to buy or sell at random (14, 15), subject
to constraints imposed by current prices. Although one might
argue that tracking prices requires at least some intelligence, this
is the minimal intelligence consistent with the assumptions of the
model, which we will loosely refer to as ‘‘zero intelligence.’’ We
show here that, for certain problems, such an approach can make
surprisingly good quantitative predictions.

Another unusual aspect of the work presented here is the
nature of the predictions we test, which take the form of simple
quantitative laws. These laws relate one set of market properties
to another, placing restrictions on the allowed values of variables
that are comparable to the ideal gas law of physics. They make
quantitative predictions about magnitude and functional form,
which are testable with only minimal auxiliary assumptions. This
is in contrast to papers testing standard models based on
rationality, which are typically forced to add strong auxiliary
assumptions not contained in the original theoretical model,
making the final results essentially qualitative.

A literature review, details of the analysis, and further com-
ments are given in Supporting Text, Tables 1 and 2, and Figs.
5–11, which are published as supporting information on the
PNAS web site.

The Model
Continuous Double Auction. The continuous double auction is the
most widely used method of price formation in modern financial
markets. The auction is called ‘‘double,’’ because traders can
submit orders to both buy and sell, and ‘‘continuous,’’ because
they can do so at any time. Under the terminology we use here,
an order that does not cross the opposite best price and so does
not result in an immediate transaction is called a limit order. An
example is a sell order with a higher price than any existing buy
order. An order that does cross the opposite best price and thus
causes an immediate transaction is called a market order. Real
markets use a host of different order types, which vary from
market to market. However, by making appropriate decompo-
sitions (sometimes involving splitting an order into two pieces),
it is always possible to break down the order flow into compo-
nents that are effectively either market orders or limit orders.
Buy and sell limit orders accumulate in their respective queues,
whereas buy and sell market orders cause transactions that
remove limit orders. A limit order can also be removed from its
queue by being canceled, which can occur at any time. The lowest
selling price offered at any point in time is called the best ask,
a(t), and the highest buying price, the best bid, b(t). The bid–ask
spread s(t) ' a(t) � b(t) measures the gap between them. The
best prices may change as new orders arrive or old orders are
canceled.

Description of the Model. The model we test here (14, 15) was
constructed to be the simplest possible sensible model of agent
behavior in a continuous double auction. It assumes that two
types of agents place orders randomly according to independent
Poisson processes, as shown in Fig. 1. Impatient agents place
market orders randomly with a Poisson rate of � shares per unit
time. Patient agents, in contrast, place limit orders randomly in
both price and time. Buy limit orders are placed uniformly
anywhere in the semiinfinite interval �� � p � a(t), where p
is the logarithm of the price, and similarly sell limit orders are
placed uniformly anywhere in b(t) � p � �. Both buying and
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selling limit orders arrive with the same Poisson rate density �,
which is measured in shares per unit price per unit time. The
log-price p is continuous and independent of arrival time. Both
limit and market orders are of constant size � (measured in
shares). Queued limit orders are canceled according to a Poisson
process, analogous to radioactive decay, with a fixed-rate � per
unit time. To keep the model as simple as possible, there are
equal rates for buying and selling, and all of these processes are
independent except for indirect coupling through the boundary
conditions, as explained below.

As new orders arrive, they may alter the best prices a(t) and
b(t), which in turn change the boundary conditions for subse-
quent limit order placement. For example, the arrival of a buy
limit order inside the spread will alter the best bid b(t), which
immediately alters the boundary condition for placing the next
sell limit order. It is this feedback between order placement and
price diffusion that makes this model interesting and, despite its
apparent simplicity, very difficult to understand analytically.
This model has been studied by using simulation and with
approximate analytic treatments based on mean field theory
(14, 15).

Some readers may be puzzled by the use of a constant density
over an infinite interval, which gives an infinite total arrival rate.
The key is that the normalization is chosen to make the arrival
rate in any given price interval finite. This is analogous to a
model of snow falling and evaporating on an infinite plane:
although the total amount of snow arriving is infinite, the
amount of snow falling in any given square during any given time
is perfectly well behaved. The situation here is much more
complicated, due to the fact that market orders define a point
removal process, and there are two kinds of ‘‘snow’’ falling on
overlapping and interacting intervals. Nonetheless, the basic
trick of normalizing the density rather than the total is the same.

Predictions of the Model. The rather radical assumption of a
uniform limit order price density is made because it simplifies
analysis, allowing the derivation of simple scaling laws relating
the parameters to fundamental properties such as the average

bid–ask spread. (For an empirical investigation of the density of
limit order placement, see refs. 12 and 16.) The mean value of
the spread predicted based on a mean field theory analysis of the
model (14, 15) is

ŝ � ������f������. [1]

The nondimensional ratio � � ���� can be thought of as the
ratio of removal by cancellation to removal by market orders and
plays an important role. f(�) is a slowly varying monotonically
increasing function that can be approximated (15) as f(�) � 0.28
� 1.86 �3/4. The scaling law above is reasonable in that it predicts
that the spread increases when there are more market orders or
cancellations (which remove stored limit orders) and decreases
with more limit orders (which fill in the spread more quickly).
The dependence on ��� can be derived from dimensional
analysis, under certain assumptions detailed in Dimensional
Analysis in Supporting Text. However, the functional form of f(�)
is not obvious. One of the predictions of the model, which to our
knowledge has not been hypothesized elsewhere in the literature,
is that the order size � is an important determinant of the spread.

Another prediction of the model concerns the price diffusion
rate, which drives the volatility of prices and is the primary
determinant of financial risk. If we assume that prices make a
random walk, then the diffusion rate measures the size and
frequency of its increments. The variance V of a random walk
grows as V(t) � Dt, where D is the diffusion rate and t is time.
This is the main free parameter in the Bachelier model of prices
(17). Although its value is essential for risk estimation and
derivative pricing, there is very little fundamental understanding
of what actually determines it. In standard models, it is often
assumed to depend on ‘‘information arrival’’ (18), which has the
disadvantage that it is impossible to measure directly. For our
idealized model, numerical experiments indicate that the short-
term price diffusion rate is to a very good approximation given
by the simple formula (14, 15)

D̂ � k�5�2�1�2��1�2��2, [2]

where k is a constant. This formula is reasonable in that it
predicts that volatility increases with limit order removal (by
either market orders or cancellations) and decreases with limit
order placement. The dependence on order size and the values
of the scaling exponents are not so obvious. It has so far not been
possible to derive this formula from theoretical considerations
(although dimensional analysis was essential for guessing this
functional form).

We would like to emphasize that the construction of the model
and all the predictions derived from it were made before looking
at the data. The model was constructed to be simple enough to
be analytically tractable and makes many strong assumptions.
The assumption of random order placement leads to conse-
quences that might be economically unreasonable in a rational
setting, such as the existence of profit-making opportunities.
However, this is self-consistent with the assumption that the only
intelligence the agents possess is the ability to mechanically
adjust the prices of limit orders based on current best prices.
Furthermore, simulations suggest that the arbitrage opportuni-
ties in this model are not risk-free, yielding only finite risky
profits (J.D.F., J. Girard, and J. Rutt, unpublished observations).

A useful concept is that of liquidity, which in this context can
be defined as the availability of standing limit orders that allow
trading to take place. The impatient market order traders are
liquidity demanders, and the limit order traders are liquidity
providers. The use of a zero-intelligence agent model makes it
possible to study the flow of liquidity in and out of the market
and to study its interaction with price formation. This has not
been properly addressed by models that attempt to fully treat

Fig. 1. A random process model of the continuous double auction. Stored
limit orders are shown stacked along the price axis, with sell orders (supply)
stacked above the axis at higher prices and buy orders (demand) stacked
below the axis at lower prices. New sell limit orders are visualized as randomly
falling down, and new buy orders are visualized as randomly ‘‘falling up.’’ New
sell orders can be placed anywhere above the best buying price, and new buy
orders can be placed anywhere below the best selling price. Limit orders can
be removed spontaneously (e.g., because the agent changes her mind or the
order expires), or they can be removed by market orders of the opposite type.
This can result in changes in the best prices, which in turn alter the boundaries
of the order placement process.
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agent rationality. Abandoning the assumption of rationality gives
the ability to focus the modeling effort on other problems, such
as those addressed here.

Testing the Scaling Laws
Data. We test this model with data from the electronic open limit
order book of the London Stock Exchange, which includes about
half of the total trading volume. We used data from 11 stocks in
the period from August 1, 1998 to April 30, 2000, which includes
434 trading days and a total of roughly six million events. For all
these stocks, the number of total events exceeds 300,000 and was
never less than 80 on any given day (where an event corresponds
to an order placement or cancellation). Orders placed during the
opening auction are removed to accommodate the fact that the
model applies only to the continuous auction. See The London
Stock Exchange Data Set in Supporting Text for more details.

Testing Procedure. We test the model cross-sectionally over 11
stocks. For each stock, we measure its average order flow rates
and calculate the predicted average spread �̂ and diffusion rate
D̂ for that stock by using Eqs. 1 and 2. We then compare these
predicted values to the actual values of the spread �� and diffusion
rate D� , which we again measure from the data. The comparison
is done via linear regressions of the predicted values against the
actual measured values. For a discussion, see Measurement of
Model Parameters and Estimating the Errors for the Regressions in
Supporting Text. Measurement of the parameters � and � is
straightforward: to measure �, for example, we simply compute
the total number of shares of market orders and divide by time
or, alternatively, we compute �t for each day and average; we get
similar results in either case. However, a problem occurs in
measuring the parameters � and � due to the simplifying
assumption of a uniform distribution of prices for limit order
placement and a uniform cancellation rate. In the real data, limit
order placement and cancellation are concentrated near the best
prices (12, 16). To cope with this, we make an auxiliary assump-
tion that order placement is uniform inside a price window
around the best prices and zero outside this window. We choose
this price window W to correspond to 	60% of limit orders away
from the midprice and compute � by dividing the number of
shares of limit orders placed inside this price window per unit
time by W. We do this for each day and compute the average
value of � for each stock. We similarly compute � as the inverse
of the average lifetime of orders canceled inside the same price
window W.

The laws we describe here do not make temporal predictions
but rather are restrictions of state variables. The ideal gas law,
PV � RT, provides a good analogy. It predicts that pressure P,
volume V, and temperature T are constrained; any two of them
determine the third. The gas constant R is the only free
parameter. In very much the same way, we are testing two
relations between properties of order flows and properties of
prices. We are not attempting to predict the temporal behavior
of the order flows; we are only trying to see whether the
restrictions between order flows and prices predicted by the
model are valid. It is important to emphasize that, whereas �, �,
�, and � can be viewed as free parameters of the model, they are
not free parameters in the test of the model. Rather they are now
variables, like P, V, and T in the ideal gas law. The only free
parameter is the price window W. We chose W � 0.6 as a prior;
it turns out it is also roughly the value that maximizes the
goodness of fit; however, varying W does not change the
goodness of fit substantially.

Spread. To test Eq. 1, we measure the average spread s� across the
full time period for each stock and compare it with the predicted
average spread ŝ based on order flows. Spread is measured as the
average of log b(t) � log a(t) (recall that, in the model, p

represents the log price). The spread is measured after each
event, with each event given equal weight. The opening auction
is excluded.

To test our hypothesis that the predicted and actual values
coincide, we perform a regression of the form log s� � A log ŝ �
B. We took logarithms to do the regression, because the spread
is positive and the log of the spread is approximately normally
distributed. An alternative would have been to take logarithms
of each event and average the logarithms. We instead regard this
as a test of the cross-sectional averages and take logarithms of
the cross-sectional values. We use A and B for hypothesis testing.
Based on the model, we predict the comparison should yield a
straight line with A � 1 and B � 0. However, because of the
degree of freedom in choosing the price interval W as described
above, the value of B is somewhat arbitrary; varying W through
reasonable values changes B significantly, with much less effect
on A.

The least-squares regression, shown together with the data
comparing the predictions to the actual values in Fig. 2, gives A �
0.99 
 0.10 and B � 0.06 
 0.29. Therefore, we strongly reject
the null hypothesis that A � 0, indicating the predictions are far
better than random. More importantly, we are unable to reject
the null hypothesis that A � 1. The regression has R2 � 0.96, so
the model explains most of the variance. Note that, because of
long-memory effects and crosscorrelations between stocks, the
errors in the regression are larger than they would be for
independent identically distributed data.

Price Diffusion Rate. As for the spread, we compare the predicted
price diffusion rate based on order flows with the actual price
diffusion rate D� for each stock averaged over the 21-mo period,
and regress the logarithm of the predicted vs. actual values, as
shown in Fig. 3.

The regression gives A � 1.33 
 0.25 and B � 2.43 
 1.75.
Thus, we again strongly reject the null hypothesis that A � 0. We

Fig. 2. Regressions of predicted values based on order flow using Eq. 1 vs.
actual values for the log spread. The dots show the average predicted and
actual value for each stock averaged over the full 21-mo time period. The solid
line is a regression; the dashed line is the diagonal representing the model’s
prediction, with A � 1 and B � 0.
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are still unable to reject the null hypothesis that A � 1 with 95%
confidence, although there is some suggestion that the real
values increase faster than the predicted values. In any case, the
predictions are at least a good approximation. Although the
results are not as good as for the spread, the model still explains
most of the variance with R2 � 0.76.

Average Market Impact
Market impact is practically important, because it is the domi-
nant source of transaction costs for large trades, and conceptu-
ally important, because it provides a convenient probe of the
revealed supply and demand functions in the limit order book
(see Market Impact in Supporting Text). When a market order of
size � arrives, if it removes all limit orders at the best bid or ask,
it will immediately change the midpoint price m ' (a � b)�2.
We define the average market impact function � in terms of the
instantaneous logarithmic midpoint price shift �p conditioned
on order size, �(�) � E[�p � �]. �p is the difference between
the price just before and just after a market order arrives (before
any other events).

A longstanding mystery about market impact is that it is a
highly concave function of � (12, 19–25). This is unexpected,
because simple arguments would suggest that because of the
multiplicative nature of returns, market impact should grow at
least linearly (15). We know of no model that explains this. The
model we are testing here predicts a concave average market
impact function, with the concavity becoming more pronounced
for small values of � � ����. Intuitively, the concavity is because
limit orders near the best price are removed by transactions more
rapidly than those far from the best price. As a result, the average
density of stored limit orders in the book increases moving away
from the midpoint. An increase in density of limit orders implies
a decreased price response to a market order of a given size,
resulting in a concave market impact function.

Although the predictions of the model are qualitatively cor-
rect, from a quantitative point of view, the model predicts a
larger variation with � than we actually observe. Nonetheless, the
model is still quantitatively useful for understanding market
impact, as described below.

A surprising regularity of the average market impact function
is uncovered by simply plotting the data in the nondimensional
coordinates dictated by the model, as shown in Fig. 4. If we view
market impact in standard dimensional units, such as British
pounds or shares, there is large variability from stock to stock;
the story becomes much simpler in nondimensional units.

Fig. 3. Regressions of predicted values based on order flow using Eq. 2 vs.
actual values for the logarithm of the price diffusion rate. The dots show the
average predicted and actual values for each stock averaged over the full
21-mo time period. The solid line is a regression; the dashed line is the
diagonal, with A � 1 and B � 0.

Fig. 4. The average market impact as a function of the mean order size. In A,
the price differences and order sizes for each transaction are normalized by the
nondimensional coordinates dictated by the model, computed on a daily basis.
Most of the stocks collapse onto a single curve; there are a few that deviate, but
the deviations are sufficiently small that, given the long-memory nature of the
data and the crosscorrelations among stocks, it is difficult to determine whether
these deviations are statistically significant. This means that we understand the
behavior of the market impact as it varies from stock to stock by a simple
transformationofcoordinates. InB, forcomparison,weplottheordersize inunits
of British pounds against the average logarithmic price shift.

Farmer et al. PNAS � February 8, 2005 � vol. 102 � no. 6 � 2257

EC
O

N
O

M
IC

SC
IE

N
CE

S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
27

, 2
02

1 



www.manaraa.com

When we plot the average market impact in standard dimen-
sional coordinates, the behavior is highly variable from stock to
stock. For example, in Fig. 4B, we plot the average market impact
�(�) � E[�p��] as a function of order size � in units of British
pounds. We do this by binning together events with similar � and
plotting this versus the corresponding mean price impact �p for
each bin. The result varies widely from stock to stock. We have
explored a variety of other ways for renormalizing the order size
(see Market Impact in Supporting Text), but they all give similar
results.

Plotting the data in nondimensional units tells a simpler story.
To do this, we normalize the price shift and order size by
appropriate dimensional scale factors based on daily order flow
rates. This transforms the standard coordinates to nondimen-
sional coordinates as �p3 �p��t��t and �3 ���t��t, where �t,
�t, and �t are the average parameters for day t. Notice that �p
has units of price, but

��p����
 � price �
shares��price�time�

shares�time
[3]

is without dimensions, i.e., the units cancel out. The data
collapse onto roughly a single curve, as shown in Fig. 4A.
Variations from stock to stock are quite small; on average, the
corresponding bins for each stock deviate from each other by
	8%, roughly the size of the statistical sampling error. We do not
find this variation is statistically significant, although we should
also say that such tests are complicated by the long-memory
property of these time series and crosscorrelations between
stocks, so that we do not consider the results fully reliable. In
contrast, by using standard dimensional coordinates, the differ-
ences are easily shown to be highly statistically significant. This
collapse illustrates that the nondimensional coordinates dictated
by the model provide substantial explanatory power: we can
understand how the average market impact varies from stock to
stock by a simple transformation of coordinates. Plotting in
double-logarithmic scale shows that the curve of the collapse is
roughly a power law of the form �0.25. This provides a more
fundamental explanation for the empirically constructed col-
lapse of average market impact for the New York Stock Ex-
change found earlier (24).

Conclusion
We have shown that the model presented here does a good job
of predicting the average spread and a decent job of predicting
the price diffusion rate. Also, by simply plotting the data in
nondimensional coordinates, we get a better understanding of
the regularities of market impact. These results are remarkable,
because the underlying model largely drops agent rationality,
instead focusing all its attention on the problem of understand-
ing the constraints imposed by the continuous double auction.

It is worth comparing our results to those of previous empirical
work. For example, Hasbrouck and Saar (26) find a positive
correlation between volatility and the ratio of market orders to
limit orders. They perform regressions of this ratio against
volatility and several other dependent variables, and obtain
goodness of fits similar to ours (except that, in their case,
volatility was one of several independent variables, whereas in
our case it was the dependent variable). They then discuss the
results in terms of their consistency with three effects that one
would expect from agent rationality. For example, one such
effect is called “market order certainty”: When prices are more
volatile, market orders become more attractive to a risk-averse
rational agent, and so the fraction of market orders should
increase. The observed positive correlations are consistent with
this idea.

The model we tested here offers an alternative explanation
that does not depend on strategic choice. We also predict a

positive correlation between volatility and the fraction of market
orders (see Eq. 2) but for a different reason: An increase in the
rate of market order submission reduces liquidity and thus
increases price volatility. We certainly believe that agents re-
spond in important ways to changing market conditions such as
volatility, and indeed we have demonstrated this in previous
work (16). Nonetheless, we argue that it is also necessary to
understand the impact of agents’ actions on market conditions.
By carefully treating the feedback in both directions between
price formation and limit order pricing under minimal assump-
tions of rationality, this model provides a null hypothesis against
which claims of rational behavior can be measured.

An important feature of our model is its parsimony and
falsifiability. Our model makes simultaneous quantitative pre-
dictions about volatility, spread, and market impact. We postu-
late specific functional forms for the relation between order
flows and spread and volatility; although there are multiple
variables involved, there is only one free parameter. Rationality-
based theories, in contrast, rarely make predictions about mag-
nitude or functional form, and as a result their predictions are
harder to test. Such tests generally require stronger auxiliary
assumptions, such as imposed functional forms with multiple
free parameters. Empirical studies that test such models often
test only the sign of such effects, which often have a variety of
alternative explanations. Our model makes sharper predictions,
and is consequently more testable (27).

The approach taken here succeeds in part because it is less
ambitious than a standard rationality-based model. This can be
viewed as a divide-and-conquer strategy. Rather than attempting
to explain the properties of the market from fundamental
assumptions about utility maximization by individual agents, we
divide the problem into two parts. The first (easier) problem,
addressed here, is that of understanding the characteristics of the
market given the order flows. The second (harder) problem,
which remains to be investigated, is that of explaining why order
flow varies as it does. Explaining variations in order flow involves
behavioral and�or strategic issues that are likely to be much
more difficult to understand. It is always desirable to solve easier
problems first.

The model succeeds in part by reducing the problem to the
measurement of the right variables. By measuring the rate of
market order placement versus limit order placement and the
rate of order cancellation, we are able to measure how patient
or impatient traders are. The model makes quantitative predic-
tions about how this affects other market properties. The
agreement with the model indicates that patience is an important
determinant of market behavior. Variations in patience might be
explained by a rationality-based explanation in terms of infor-
mation arrival or a behavioral-based explanation driven by
emotional response, but in either case they suggest that patience
is a key factor.

These results have several practical implications. For market
practitioners, understanding the spread and market impact
function is very useful for estimating transaction costs and for
developing algorithms that minimize their effect. For regulators,
they suggest it may be possible to make prices less volatile and
lower transaction costs, if desired, by creating incentives for limit
orders and disincentives for market orders. These scaling laws
might also be used to detect anomalies, e.g., a higher-than-
expected spread might be due to improper market-maker
behavior.

This is part of a broader research program that might be
somewhat humorously characterized as the ‘‘low-intelligence’’
approach: we begin with minimally intelligent agents to get a
good benchmark of the effect of market institutions and, once
this benchmark is well understood, add more intelligence, mov-
ing toward market efficiency. We thus start from almost zero
rationality and work our way up, in contrast to the canonical

2258 � www.pnas.org�cgi�doi�10.1073�pnas.0409157102 Farmer et al.
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approach of starting from perfect rationality and working down
(see ref. 16).

The model we test here was constructed before looking at the
data (14, 15) and was designed to be as simple as possible for
analytic analysis. A more realistic (but necessarily more com-
plicated) model would more closely mimic the properties of real
order flows, which are price-dependent and strongly correlated
both in time and across price levels, or might incorporate
elements of the strategic interactions of agents. An improved
model would hopefully be able to capture more features of the
data than those we have studied here. We know there are ways
in which the current model is inappropriate, e.g., it allows
arbitrage opportunities that do not exist in the real market.
Nonetheless, as we have shown above, this extremely simple
model does a good job of explaining some important properties
of markets. For further discussion, see Extending the Model in
Supporting Text.

How is it conceivable to successfully model a situation in which
we know that agents engage in clever strategic behavior in terms
of a model that completely neglects this? Perhaps a telephone
exchange provides a good analogy: even though each customer
has a perfectly good reason for picking up the phone, commu-

nications engineers design exchanges by assuming they do so at
random. Similarly, there are situations in markets where rational
behavior can be treated in aggregate as though it were noise. The
question is whether rational effects are more important or less
important than stochastic effects. Rational effects are clearly
important in determining overall price levels, but they may be
dominated by random fluctuations in determining volatility. We
do not mean to claim that market participants are unintelligent;
indeed, one of the virtues of this model is that it provides a
benchmark to separate properties driven by the statistical me-
chanics of the market institution from those driven by the
strategic behavior of agents. It suggests that institutions strongly
shape our behavior, so that some of the properties of markets
may depend more on the structure of institutions than on the
rationality of individuals.
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